Acute triangulations of polyhedra and ℝ N
نویسندگان
چکیده
We study the problem of acute triangulations of convex polyhedra and the space Rn. Here an acute triangulation is a triangulation into simplices whose dihedral angles are acute. We prove that acute triangulations of the n–cube do not exist for n ≥ 4. Further, we prove that acute triangulations of the space Rn do not exist for n ≥ 5. In the opposite direction, in R3, we present a construction of an acute triangulation of the cube, the regular octahedron and a non-trivial acute triangulation of the regular tetrahedron. We also prove nonexistence of an acute triangulation of R4 if all dihedral angles are bounded away from π/2.
منابع مشابه
Acute Triangulations of Polyhedra and R
We study the problem of acute triangulations of convex polyhedra and the space R. Here an acute triangulation is a triangulation into simplices whose dihedral angles are acute. We prove that acute triangulations of the n-cube do not exist for n≥4. Further, we prove that acute triangulations of the space R do not exist for n≥5. In the opposite direction, in R, we present a construction of an acu...
متن کاملA Variational Principle for Weighted Delaunay Triangulations and Hyperideal Polyhedra
We use a variational principle to prove an existence and uniqueness theorem for planar weighted Delaunay triangulations (with non-intersecting site-circles) with prescribed combinatorial type and circle intersection angles. Such weighted Delaunay triangulations may be interpreted as images of hyperbolic polyhedra with one vertex on and the remaining vertices beyond the infinite boundary of hype...
متن کاملModelling Decision Problems Via Birkhoff Polyhedra
A compact formulation of the set of tours neither in a graph nor its complement is presented and illustrates a general methodology proposed for constructing polyhedral models of decision problems based upon permutations, projection and lifting techniques. Directed Hamilton tours on n vertex graphs are interpreted as (n-1)- permutations. Sets of extrema of Birkhoff polyhedra are mapped to tours ...
متن کاملLattice triangulations of E 3 and of the 3 - torus
1 This paper gives answers to a few questions concerning tilings of Euclidean spaces where the tiles are topological simplices with curvilinear edges. We investigate lattice triangulations of Euclidean 3-space in the sense that the vertices form a lattice of rank 3 and such that the triangulation is invariant under all translations of that lattice. This is the dual concept of a primitive lattic...
متن کاملAnisotropic Hardy Spaces of Musielak-Orlicz Type with Applications to Boundedness of Sublinear Operators
Let φ : ℝ(n) × [0, ∞)→[0, ∞) be a Musielak-Orlicz function and A an expansive dilation. In this paper, the authors introduce the anisotropic Hardy space of Musielak-Orlicz type, H(A)(φ)(ℝ(n)), via the grand maximal function. The authors then obtain some real-variable characterizations of H(A)(φ)(ℝ(n)) in terms of the radial, the nontangential, and the tangential maximal functions, which general...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorica
دوره 32 شماره
صفحات -
تاریخ انتشار 2012